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Motivation
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The origins of Discriminant Analysis (DA)

– First introduced by Fisher (1936)., DA is a multivariate 
technique used to classify observations into classes, and/or 
describe class differences. 

– Used in many fields (such as applied psychological research) to 
develop efficient classification rules and assess relative 
importance of variables for discriminating between classes.
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Assumptions of Discriminant Analysis

DA assumes that the conditional distribution of our data X given a 
class y = c is a multivariate normal distribution:  

We assign a new point x to the class which has the highest 
probability, where
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Issues with Discriminant Analysis

Does not work in high 
dimensions (when p > n) as 
covariance inverse is singular.

Solution: Factor Analytic 
models can be used to provide 
low rank representations of 
covariance matrix. 

See HiDimDA (Duarte Silva, 2011) 
and FADA (Perthame, 2016)

Conditional distribution is 
assumed Gaussian - does not 
work when response type is 
non-Gaussian.
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Issues with Discriminant Analysis

Does not work in high 
dimensions (when p > n) as 
covariance inverse is singular.

Solution: Factor Analytic 
models can be used to provide 
low rank representations of 
covariance matrix. 

See HiDimDA (Duarte Silva, 2011) 
and FADA (Perthame, 2016)

Conditional distribution is 
assumed Gaussian - does not 
work when response type is 
non-Gaussian.

Solution: 

?
Can we apply factor analysis type models 

to non Gaussian data?
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Generalised Linear Latent Variable Models

Consider a matrix Y of n observations consisting of responses for 
m features. 

A generalised linear latent variable model (GLLVM) regresses the 
mean response against a vector of d << m latent variables ui, 
along with a vector of covariates xi. That is,

We assume the latent variables follow a multivariate standard 
normal distribution,                     . 
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Relationship between GLMMs and GLLVMs

Warton et al, 2015

Correlation can be handled in different
ways
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Relationship between GLMMs and GLLVMs

Warton et al, 2015

Correlation can be handled in different
ways

A GLMM uses correlated random effects
to estimate correlation.

A GLLVM uses a smaller number of latent
variables, which play the role of missing
predictors. Their factor loadings approx.
the correlation across features, but uses 
fewer parameters than a GLMM.
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Using GLLVMs to build a generalised DA method

Common Covariance Model (LDA analogue)

Fit one GLLVM for all K classes, 
with class information stored in X

For new data Y*, fit GLLVM 
using previously trained 

coefficients, and test under all X 
= K classes

Pick class that maximises log-
likelihood
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Using GLLVMs to build a generalised DA method

Separate Covariance Model (QDA analogue)

Fit K GLLVM’s for K classes 
(different sets of coefficients for 

different classes)

For new data Y*, fit K GLLVMs 
using previously trained 

coefficients

Pick class that maximises log-
likelihood
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Step One: Fit GLLVM(s) to training data
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GLLVM – model formulation

To complete the formulation, we assume conditional on the LV’s 
and parameter vector, the responses are independent 
observations from the exponential family of distributions with 
probability density function

where                                             (all parameters in model), 

and                                     .
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GLLVM – expression for the marginal distribution

With the independence 
structure given the latent 
variables, 
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GLLVM – expression for the marginal distribution

With the independence 
structure given the latent 
variables, we can obtain the 
marginal log-likelihood function 
for a GLLVM by integrating 
over the latent variables u.
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GLLVM – expression for the marginal distribution

With the independence 
structure given the latent 
variables, we can obtain the 
marginal log-likelihood function 
for a GLLVM by integrating 
over the latent variables u.

Unfortunately, this cannot be 
solved analytically for non-
Gaussian response.
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GLLVMs are difficult to estimate

Research has been done to efficiently estimate GLLVMs. These 
include:
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– Huber, 2004 showed that the Laplace Approximation can be 
used to estimate GLLVMs from the exponential family.
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GLLVMs are difficult to estimate

Research has been done to efficiently estimate GLLVMs. These 
include:

– Huber, 2004 showed that the Laplace Approximation can be 
used to estimate GLLVMs from the exponential family.

– Niku et. al, 2017 extended this work in Laplace 
Approximations to cover Tweedie, Negative Binomial, and ZIP.

– Hui et. al, 2017 used Variational Approximations to estimate 
various types of GLLVMs, using a GVA approach.

– Niku et. al, 2019 released an efficient package for estimating 
GLLVMS (gllvm) based on Laplace and Variational 
Approximations. 
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GLLVMs are difficult to estimate

Although the gllvm package is excellent, it can only support the 
data coming from one response type. Hence, we need to build our 
own functions to estimate GLLVMs for differing response types.

We currently support a mixture of 
– Bernoulli, 
– Poisson, 
– Negative Binomial, 
– Gaussian, 
– Log-Normal, and 
– Zero Inflated Poisson responses. 
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A Bayesian GLLVM – prior specification

Another twist we will add, in comparison to previous work, is 
approach this from a Bayesian framework, with the priors on our 
coefficients allowing us to incorporate regularisation in the fitting 
process. With this in mind, we set

and for the dispersion parameter (if applicable):
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Variational family

We consider the following parameterisation to construct our 
variational lower bound

where we assume both           and           are multivariate normal 
distributions.
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A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.



The University of Sydney Page 28

A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.

In particular, they show that for GLLVMs from the exponential 
family, the VA log likelihood is in the following form:

.

where                                     , and                            .
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A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.

Given this, we construct our variational lower bound as follows:

GVA Terms
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A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.

Given this, we construct our variational lower bound as follows:

GLLVM Terms
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A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.

Given this, we construct our variational lower bound as follows:

Prior Terms
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A Gaussian Variational Approximation (GVA)

Hui et. al (2017) showed that for GLLVMs, it is optimal to use GVA 
and assume the following q density for the LVs:

.

Given this, we construct our variational lower bound as follows:

How to deal 
with this 

expectation?
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A Second Order Delta Method Approximation

Using the Delta Method, we approximate the expectation using 
second order terms as follows:



The University of Sydney Page 34

Profile likelihood

Given the approximated likelihood, we obtain a profile likelihood 
by first optimising for nuisance parameters, which in this case is the 
covariance of the GVA q density. 

First order optimality conditions imply:
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Profile likelihood

Substituting this expression back into our likelihood, we obtain the 
following profile likelihood:

We then perform Laplace’s method to obtain a multivariate 
normal approximation for         .
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Software Implementation – Automatic Differentiation 
(AD)

Optimisation of LB is performed with the help of AD to calculate 
function gradients
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Software Implementation – Automatic Differentiation 
(AD)

To take advantage of this technique – the TMB package 
returns an AD gradient of functions which can be passed 
into optimisation routines such as nlminb instead of 
relying on inbuilt numeric differentiation.

The catch? The function to be optimised must be written 
using a C++ template. 



The University of Sydney Page 38

genDA – the algorithm

1. Determine families of columns of data to be 
estimated, as well as separate out class variable (as 
a factor).

2. Initialise parameters to be estimated. LV parameters 
can be estimated using a FA approach (Niku, 2019).

3. Optimise derived approximate log lower bound by 
using TMB and nlminb, and report fitted values.

4. (Optional) standard errors can also be calculated by 
looking at inverse Hessian matrix.
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Step Two: Use fitted model to predict new testing 
points
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A simple prediction approach

Suppose we want to predict a new class value, xi*, given new 
feature information Yi*. 

To obtain an expression for the joint lower bound for the new 
datapoints, we perform a first order delta method to substitute 
previously optimised parameters not depending on i, and optimise 
over values of the new row effects τi*, and LVs ui*:
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A Dirichlet Multinomial Distribution for class

We assume that xi* follows a multinomial distribution, with prior 
probabilities ρk depending on concentration parameters αk .

We can directly obtain an analytical expression for p(xi*| αk ) as 
follows:

where                      .
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MAP estimates

To classify a new point xi*, we find the probability of class membership 
under each class, and pick the probability that maximises the likelihood 
of inclusion. Probabilities are generated through the following:

where                                  with respect to τi*, ui*. 



The University of Sydney Page 43

genDA – the prediction algorithm

1. Initialise new LVs
2. Using fitted values from genDA and new data Y*, estimate log 

likelihood of new data under each class.
3. Assign class such that the log-likelihood is maximised.
4. Return predicted class as well as probability of class 

membership.



The University of Sydney Page 44

Lets see if this works! 
Benchmark data analysis
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genDA in action – Urban Land-cover data



The University of Sydney Page 46

Can we predict segment class in images?
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Can we predict segment class in images?

– The study area is an urban area in Deerfield Beach, FL, USA, 
with a 30cm resolution colour infrared aerial orthoimagery of 
the study area acquired. 

– Contains 9 different types of landcover including buildings, 
concrete, asphalt, trees, grass, pools, soil, cars, and shadows.

– Data consists of  n = 168 image segments to be classified with 
m = 147 features associated with each image segment such as 
area, brightness, texture, etc at different resolutions. Features 
are a mix of Gaussian, Log-Normal, and Negative Binomial 
response.
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Correlation of Features (first 100 variables)
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Dig a little deeper – a difference in correlation 
structure

Class = CarClass = Shadow
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Difference in Correlation Structure (first 100 variables)

Class = CarClass = Shadow

Structure within 
particular groups of 

variables (Area, 
Brightness, Roundness) 
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Difference in Correlation Structure (first 100 variables)

Class = CarClass = Shadow

Structure within 
particular groups of 

variables (Area, 
Brightness, Roundness) 

Structure within 
particular resolutions 
(40 and 60) against 
(80 and 100) and so 

on.
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Classification – the genDA approach

Since correlation structure differs greatly between classes, we fit 
a QDA type model to Urban Cover data – and test performance 
with a 100 x 5 Fold CV procedure. Using our genDA R package, 
we can perform this quite easily:

fit = genDA(y = y.train, class = class.train, 
common.covariance = FALSE)

pred = predict(fit, newdata = y.test)$class

mean(pred!=class.test)
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100 Trial, 5 Fold CV results
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Comments on speed and coverage

Scenario:
Bernoulli GLLVM 
estimation with 
covariates 
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genDA package

https://sarahromanes.github.io/genDA

A fast, efficient, and easy to use R
implementation based on this work is 
available at the following address:



The University of Sydney Page 56

Further research directions

– Feature selection for GLLVMs remains an open problem and 
would likely see improvements in predictive performance.

– Investigate effects of altering prior dispersion for coefficient 
parameters. Currently fixed – perhaps a cv.glmnet like 
approach would be optimal.
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Thank you!

Work presented today is in collaboration 
with my supervisor A/Prof John Ormerod.

Many thanks to the USYD Statistical 
Bioinformatics group, for all their support 

and guidance!

Get in touch!
email: sarah.romanes@sydney.edu.au

twitter: @sarah_romanes
sarahromanes.github.io

mailto:sarah.romanes@sydney.edu.au
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